

STUDY ON FLUE GAS DESULFURIZATION IN 330 MW POWER UNITS

Cristinel Racoceanu, Professor, "Constantin Brâncuși" University of Târgu Jiu

ABSTRACT. This paper presents a case study on the operation of the flue gas desulfurization plant at the 330 MW power plants of the Oltenia Energy Complex. The efficiency of the wet flue gas desulfurization plant at the 1035 t/h steam boiler, which operates with lignite from the Oltenia Mining Basin, is analyzed.

KEY WORDS. SO₂, limestone, gypsum, specific heat, flue gas analyzer.

1. INTRODUCTION

Technological process of flue gas desulfurization.

The boilers of the 330 MW power plants of the Oltenia Energy Complex operate with lignite, originating from surface mining operations in Gorj County. The combustion of coal results in polluting substances (sulfur oxides, nitrogen oxides, carbon oxides, ash) that have harmful effects on the environment and human health. In order to comply with environmental protection regulations, the 330 MW power plants were equipped with modern flue gas decontamination technologies. In order to comply with the maximum limit for SO₂ emissions of 200 mg/Nm³ of exhaust gases, wet flue gas desulfurization technology is used.

The flue gases are taken from the boiler flue gas fans discharge through a channel that bypasses the chimney and introduced into the absorber with two auxiliary fans necessary to compensate for the additional pressure loss introduced by the new gas and absorber channels. For certain special operating situations there is the possibility of directing the flue gases directly to the boiler chimney and bypassing the desulphurisation plant.

The limestone used to reduce the SO₂ content from 4000-6000 mg/Nm³ to

below 200 mg/Nm³ is unloaded, stored and prepared by crushing in the limestone farm. Then, before being introduced into the absorber, it is ground in ball mills, mixed with water, passed through a hydrocyclone and stored in tanks as a solution. The lime solution washes the flue gases in countercurrent and is recirculated to the absorber by means of recirculation pumps, from the desulfurization process resulting in gypsum. The gypsum solution is discharged from the absorber with a gypsum concentration of 16%, passes through a hydrocyclone after which the gypsum concentration becomes 55% and then, depending on the density and pH values, is recirculated to the absorber via a recirculation tank or is discharged either directly to the gypsum dryer or to the Bagger pump station after being stored in transfer tanks. After the dryer, the gypsum with a moisture content of 10% is stored in the gypsum storage. To carry out the desulfurization process, oxidation with atmospheric oxygen supplied by blowers and process water supplied by the treatment plant is required. The limestone and

gypsum storage are common to the four boilers. There is one absorber and two auxiliary flue gas fans for each boiler. One mill can supply limestone for two absorbers, with one limestone solution tank for each absorber. All four tanks

are connected by a level equalization pipe.

2. EXPERIMENTAL RESULTS

Figure no. 1 shows the diagram of the wet desulfurization installation of energy group no. 5 at the Rovinari thermal power plant.

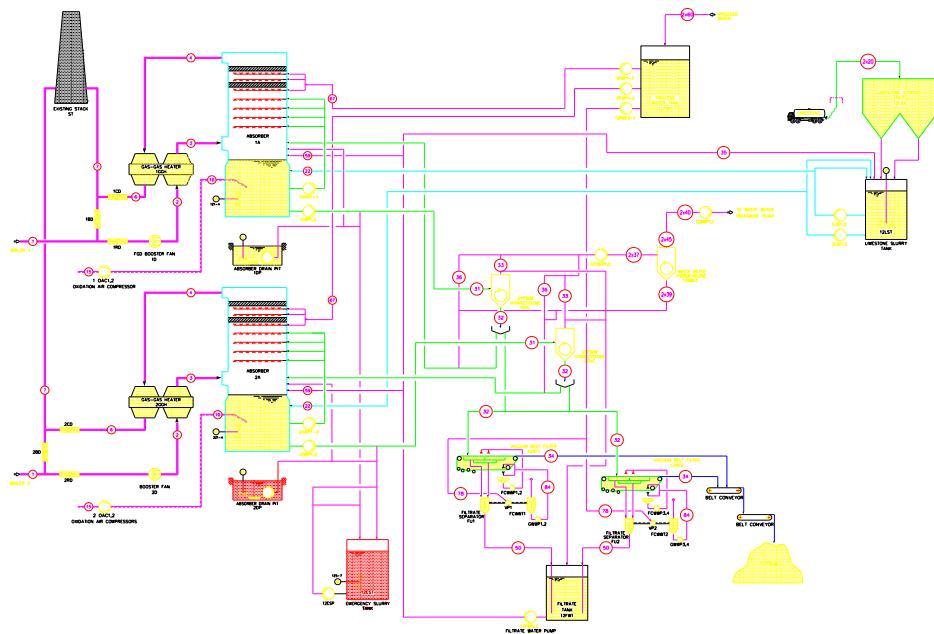


Figure 1 Scheme of the wet flue gas desulfurization plant

For the experimental measurements, the following were used:

- flue gas analyzers type TESTO 340, with 4 sensors: O₂, CO, NO, SO₂, compact sampling probe of 180 mm, T_{max} 500 0 C, ambient temperature sensor, differential pressure sensors;
- Panametrics ultrasonic flowmeter;
- digital thermometers, accuracy class 0.5;
- chromel-alumel thermocouples of different lengths;
- Pitot tube;
- infrared thermometer;

Measurement points used:

- flue gas inlet desulphurization plant:
- flow rate (dynamic pressure);
- temperature;
- static pressure;
- analysis: O₂, CO₂, CO, SO₂, NO_x;

- humidity;
- flue gas outlet desulphurization plant:
 - flow rate (dynamic pressure);
 - temperature;
 - static pressure;
 - analysis: O₂, CO₂, CO, SO₂, NO_x;
 - humidity;
- oxidation air suction blower:
 - temperature;
 - barometric pressure;
 - humidity;
- gypsum:
 - temperature;
 - flow rate;
- process water:
 - flow rate;
 - temperature;
- limestone:
 - temperature;

- temperature
The results of the measurements carried out for the steam boiler of the power group no. 5, with a power of 330 MW, table no. 1.

The results of the measurements carried out for the desulfurization plant are presented in table no. 2.

Table no.1 Steam boiler parameters

Nr. crt.	Name	U.M.	Measured values
1.	Live steam flow	t/h	934,9
2.	Injection water flow into intermediate steam	t/h	11,37
3.	Average live steam pressure	bar	184,8
4.	Average cold intermediate steam pressure	bar	49,2
5.	Average hot intermediate steam pressure	bar	41,7
6.	Feed water pressure	bar	254,3
7.	Average live steam temperature	°C	537,1
8.	Feed water temperature	°C	259,4
9.	Average cold intermediate steam temp.	°C	345,6
10.	Average hot intermediate steam temp.	°C	530,9
11.	Lower calorific value of coal	kcal/kg	1989
12.	Coal elemental analysis	%	22,78
	- C ⁱ	%	2,12
	- H ⁱ	%	1,05
	- S	%	9,25
	- O ⁱ	%	
13.	Coal elemental analysis	%	0,62
	- Wt ⁱ	%	40,82
	- N ⁱ	%	
	- A ⁱ	%	22,64
14.	Gaseous fuel flow	Nmc/h	0

Table no.2 Desulfurization plant parameters

Nr. Crt.	Name	U.M.	Measured values
Oxidation air			
1.	Ambient air temperature	°C	23,8
2.	Ambient air relative humidity	%	42,4
3.	Barometric pressure	mbar	996,0
Flue gas entering the system			
4.	Flue gas analysis at the desulfurization plant inlet : - O _{2i} - CO _{2i} - CO _i - SO _{2i} (la 6% O ₂) - NO _{xi} (la 6% O ₂)	%	10,02
		%	11,35
		%	0,0031
		mg/Nm ³	5783
		mg/Nm ³	148
			508

5.	Flue gas temperature at system inlet	°C	154,2
6.	Volume humidity at system inlet	%	17,32
7.	Static relative flue gas pressure at system inlet	mbar	-2,81
8.	Dynamic flue gas pressure at system inlet	mmH ₂ O	-
Gaze de ardere ieșire instalatie			
9.	Analysis of flue gas at the desulfurization plant outlet: - O _{2e} - CO _{2e} - CO _e - SO _{2e} (la 6% O ₂ , uscat) - NO _x e (la 6% O ₂ , uscat)	% % % % mg/Nm ³ mg/Nm	10,02 11,24 0,0027 145,6 514
10.	Flue gas temperature at system outlet	°C	65,8
11.	Volumetric humidity at system outlet	%	23,2
12.	Relative static pressure at system outlet	mbar	-7,7
13.	Dynamic pressure at system outlet	mmH ₂ O	-
Process water			
14.	Process water flow line 34	m ³ /h	73,6
15.	Process water flow line 56	m ³ /h	65,1
16.	Process water temperature	°C	34,2
Lime solution			
17.	Variation start-end tank level 3	mm	0
18.	Variation start-end tank level	mm	0,02
19.	Variation start-end tank level 5	mm	0,0033
20.	Variation start-end tank level 6	mm	0,0041
Gypsum solution			
21.	pH of solution in absorber	-	5,61
22.	Density of gypsum solution	Kg/l	1,1086
23.	End-beginning variation of transfer reservoir level 2	mm	0,334
24.	End-beginning variation of transfer reservoir level 3	mm	0,891
25.	Temperature of gypsum solution in transfer reservoir	°C	66,4
Gypsum			
26.	Gypsum temperature discharged from the dryer	°C	33
27.	Volume of gypsum discharged (according to the geometry of the deposit made during the measurements)	m ³	12,8

3. CONCLUSIONS

The role of the desulphurisation plant is not an energy one (energy production, drying, melting, etc., which would involve fuel consumption or recovery of

a quantity of heat). Its role is to reduce the amount of sulphur dioxide in the flue gases so that the emission falls within the legal limits. The only identifiable causes of the high consumption of process water would be the physical and chemical processes taking place in the absorber or the existence of an undetectable loss of water in the channel. From the analysis of

the operation and in other periods of time it appears that this high water consumption was not caused by an abnormal operation, existing at the time of the test, but is a permanent characteristic of the desulphurisation plant of block no. 5. Regarding the limestone consumption, taking into account the flue gas flow rate, the SO₂ concentration at the inlet and the limestone consumption, a specific limestone consumption of 1.6487 kgCaCO₃/kgSO₂ results.

REFERENCES

- 1.Racoceanu, C., Popescu C. *ANALYSIS OF THE IMPACT OF ENERGY COMPLEXES ON THE ENVIRONMENT* – second edition, SITECH Craiova Publishing House, 2024.
2. Racoceanu, C. *AUDIT STUDY OF THERMOELECTRIC POWER PLANTS* - second edition, SITECH Craiova Publishing House, 2024.
3. Popescu, C. Racoceanu, C., *IMPROVE THE EFFICIENCY OF POWER PLANTS UNDER ENVIRONMENTAL PROTECTION*, Publishing House Sitech, 2006.
4. Racoceanu C., Căpățină C., *EMISSIONS OF POWER STATIONS*. Publishing House Matrix Rom, București, 2005.
5. ICEMENERG, 1035 t/h boiler operation technical book, Bucharest, 1992.
6. Cazalbașu Violeta Ramona, *THE IMPACT OF THE WIND POWER STATIONS ON THE AVIFAUNA THE SITES OF COMMUNITY IMPORTANCE*, Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , ISSN 1842-4856, No. 4/2018, pag 55-60.
7. Cruceru M., *HEAT RECOVERY FOR ELECTRICITY GENERATION IN LOW TEMPERATURE POWER CYCLES*, Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series, no 3, 2019
- 8.. Schiopu Emil Catalin; Popescu Luminita Georgeta; Popa Roxana Gabriela, *DETERMINATION OF POWDER IMISSIONS DEPOSITED FROM ROVINARI AREA WHICH COME FROM THE ACTIVITIES OF DEPOSING THE COAL AND PREVENTION MEASURE*, 14th International Multidisciplinary Scientific Geoconference, ISBN: 978-619-7105-17-9, ISSN: 1314-2704, 2014.
- 9.Lucica Anghelescu, Bogdan Diaconu, *APPLICATION OF FLUE GAS WET DESULFURIZATION METHOD AT ROVINARI COAL-FIRED POWER PLANT – PROCESS PERFORMANCE*, Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 3/2018, pag 104-108, ISSN 1842- 4856 .
10. Adriana Foaene – „*CREATIVITY AND ENERGY*”, Analele Universitatii „Constantin Brancusi” din Tg Jiu, Seria Stiinte ale Educatiei, Nr.2/2018, Tg Jiu, Romania,ISSN 1844-7031, pag.20-27.
11. Adriana Foaene - *COMBUSTION OF THE FUELS*,A Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , Nr.1/2018, Tg Jiu, Romania,ISSN 1842-4856, Online ISSN 2537-530X,Online ISSN-L 1842-4856, pag.29-35.
12. Popescu Cristinel - *ASPECTS REGARDING THE DIAGNOSTICATION OF THE MEDIUM VOLTAGE AFFERENT TO THE COLLECTOR BARS OF THE POWER SUPPLY SYSTEM OF OWN SERVICE CONSUMERS OF AN ENERGY GROUP WITH THE POWER OF 330 MW*. Annals of the „Constantin Brâncuși” University of Târgu Jiu, Engineering Series, No. 2/2017,pp.92-95.
- 13.Cristinel Popescu: *ASPECTS REGARDING THE OPERATING REGIME IN CHARGE OF SINGLE PHASE ELECTRICAL TRANSFORMERS*, Annals of the “Constantin Brâncuși” University of Târgu-Jiu. Engineering Series, 3 (2019), 95-98 [ISSN: 1842-4856], pp.95-98.
- 14.Lucica Anghelescu, *REDUCTION OF NOX BY MEANS OF UREA INJECTION - ROVINARI POWER PLANT CASE*, Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 3/2018, pag. 54-58, ISSN 1842-4856.
- 15.Şchiopu Emil Cătălin, *MONITORING NOISE IN THE INDUSTRIAL AREA OF ROVINARI*, Annals of the „Constantin Brâncuși”, University of Târgu-Jiu, Engineering Series, ISSN 1842-4856, No. 2/2016, pag. 17-20.
16. Cruceru M., Voronca M.M., Diaconu B., *IMPLEMENTATION OF THE EU LEGISLATION ON ROMANIAN POWER*

INDUSTRY. ROMANIAN LEGISLATION: ACHIEVEMENTS AND SHORTCOMINGS, Energy, vol.30, no.8, 2005

17. M. Cruceru, B. Diaconu, L.Angelescu, *POSSIBILITIES TO RECYCLE THE BOTTOM ASH FROM COAL FIRED BOILERS. PART I. METHODOLOGY*, Annals of the „Constantin Brâncuși”, University of Târgu-Jiu, Engineering Series, ISSN 1842-4856, No. /2020, pag. 36-41.

18. M. Cruceru, B. Diaconu, L.Angelescu, *POSSIBILITIES TO RECYCLE THE BOTTOM ASH FROM COAL FIRED BOILERS. PART II. RESULTS*, Annals of the „Constantin Brâncuși”, University of Târgu-Jiu, Engineering Series, ISSN 1842-4856, No. /2020, pag. 42-45.

19. Cruceru, M., Diaconu, B.M., Serban, G. *INFLUENCE OF SNCR PROCESS ON THE DYNAMICS OF THE COMBUSTION AND CONTENT OF UNBURNED CARBON IN THE BOTTOM ASH*, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2019, 19(4.1), pp. 727–732.

20. Lucica Angelescu, Bogdan Diaconu, Mihai Cruceru, *SULPHUR REMOVAL IN COAL-FIRED POWER PLANTS. PART I: SULPHUR EMISSIONS ASSESSMENT METHODOLOGY*, Annals of the „Constantin Brâncuși” University of Târgu-Jiu, Engineering Series, ISSN 1842-4856, Vol. 2, Noiembrie 2021, pp. 174-178.

21. Lucica Angelescu, Bogdan Diaconu, Mihai Cruceru, *SULPHUR REMOVAL IN COAL-FIRED POWER PLANTS PART II: BEFORE AND AFTER IMPLEMENTATION*, Annals of the „Constantin Brâncuși” University of Târgu-Jiu, Engineering Series, ISSN 1842-4856, Vol. 2, Noiembrie 2021, pp.179-184.

22. Josef Timmeberg, Adriana Tudorache,Francisc Comarla- A *STEP TOWARDS ENERGY TRANSITION - PART I*, Annals of the „Constantin Brâncuși”, University of Târgu-Jiu, Engineering Series, nr.3/2022, pag.89-93.

23. Adriana Tudorache, Francisc Comarla, Josef Timmeberg-A *STEP TOWARDS ENERGY TRANSITION - PART II*, Annals of the „Constantin Brâncuși”, University of Târgu-Jiu, Engineering Series, nr.3/2022, pag.94-99.

24. Popescu Cristinel - *ASPECTS OF THE POSSIBILITY OF DETERMINING THE ELECTRICITY CONSUMPTION UNDER FIXED AMOUNT SYSTEM*, Annals of 'Constantin Brancusi' University of Targu-Jiu. Engineering Series; 2016, Issue 3, pg 24-27.

25. Popescu Cristinel - *STUDY ON THE DETERMINATION OF THE PARAMETERS OF A SINGLE PHASED ELECTRICAL TRANSFORMER REGIME FOR IDLING OPERATING.*, Annals of 'Constantin Brancusi' University of Targu-Jiu. Engineering Series; 2016, Issue 3, p80-83.

26. Emil Cătălin Șchiopu, Roxana Gabriela Popa, Ramona Violeta Mitran, Gămăneci Gheorghe, *MONITORING OF GASES IMMISSION AND PARTICLES IN SUSPENSION IN THE ROVINARI AREA*, The 13th International Multidisciplinary GeoConference SGEM 2013,16-22 June, 2013, Albena Co., Bulgaria, Conference Proceedings volume 1, Ecology and Environmental Protection, pag. 715-721, ISBN 978-619-7105-04-9.

27. Cazalbașu Violeta Ramona , *ACTUAL STUDY OF SOUND POLLUTION PRODUCED BY ROSIȚA MINORITY EXPLOITATION*, Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series, ISSN 1842-4856, No. 1/2019, pag 43-46.